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Ecole Centrale Nantes, Université de Nantes
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ABSTRACT
This paper aims at handling high dimensional uncertainty

propagation problems by proposing a tensor product approxi-
mation method based on regression techniques. The underlying
assumption is that the model output functional can be well rep-
resented in a separated form, as a sum of elementary tensors in
the stochastic tensor product space. The proposed method con-
sists in constructing a tensor basis with a greedy algorithm and
then in computing an approximation in the generated approxi-
mation space using regression with sparse regularization. Using
appropriate regularization techniques, the regression problems
are well posed for only few sample evaluations and they provide
accurate approximations of model outputs.

1 INTRODUCTION
Uncertainty quantification has emerged as a crucial field of

investigation for various branches of science and engineering.
Over the last decade, considerable efforts have been made in
the development of new methodologies based on a functional
point of view in probability, where random outputs of simula-
tion codes are approximated with suitable functional expansions.
Typically, when considering a function u(ξ ) of input random pa-
rameters ξ = (ξ1 . . .ξd), an approximation is searched under the

∗Address all correspondence to this author.

form u(ξ ) ≈ ∑
N
i=1 uiφi(ξ ) where the φi(ξ ) constitute a suitable

basis of multiparametric functions (e.g. polynomial chaos basis).

Several methods have been proposed for the evaluation of
functional expansions [1,2]. Non intrusive techniques as L2 pro-
jection or regression methods allow the estimation of expansion
coefficients by using evaluations of the numerical model at cer-
tain sample points, thus allowing the simple use of existing de-
terministic simulation codes. However the dimension N of clas-
sical approximation spaces has an exponential (or factorial) in-
crease with dimension d and hence the computational cost be-
comes prohibitively high as one needs to evaluate the model for
a large number of samples Q≈ N. The question is: can we con-
struct a representation of the high dimensional object u, given the
fact that we have only limited information on it ? We are partic-
ularly interested in the case where the dimension d is large but
the “effective dimensionality” of the underlying function is fairly
small.

In order to handle high-dimensional models, we here pro-
pose a regression-based tensor approximation method, which ex-
ploits the tensor structure of the stochastic function spaces. The
underlying assumption is that the model output functional can
be well represented in a low dimensional basis composed of el-
ementary tensors (rank-one functions). Tensor approximation
methods have recently been applied to many areas of scientific
computing for representing elements in high dimensional tensor
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product spaces [3]. In the context of uncertainty quantification,
for problems involving very high stochastic dimension, instead
of evaluating the coefficients of an expansion in a given approxi-
mation basis (e.g. polynomial chaos), function u is approximated
in suitable low-dimensional tensor subsets (e.g. rank m tensors)
which are low-dimensional manifolds of the underlying tensor
space. The dimensionality of these manifolds typically grows
linearly with dimension d and therefore, it addresses the curse of
dimensionality. Note that a regression-based method has already
been proposed in [4] for the construction of tensor approxima-
tions of multivariate functionals. Here, we propose an alternative
construction of tensor approximations using greedy algorithms
and sparse regularization techniques.

The proposed method consists in approximating the model
with a m-term representation um(ξ ) = ∑

m
i=1 αiwi(ξ ) where the wi

are selected in a suitable low-dimensional tensor subset M (typ-
ically rank-one elements) and where the αi are real coefficients.
Sparse regularization techniques are used in order to retain only
the most significant basis functions, which results in an improve-
ment of robustness of the regression-based tensor approximation
method when dealing with a limited number of samples. As a re-
sult, the proposed technique allows to approximate the response
of models with a large number of random inputs even with a lim-
ited number of model evaluations.

The outline of the paper is as follows. In section 2, we in-
troduce some basic concepts about functional approaches in un-
certainty propagation. We also detail several methods based on
regression for the computation of approximate functional expan-
sions. In section 3, we introduce the proposed tensor approxima-
tion method based on regularized regression. Finally the ability
of the proposed method to handle high dimensional uncertainty
propagation problems is illustrated on numerical applications in
section 4.

2 FUNCTIONAL REPRESENTATION AND REGRES-
SION METHODS

2.1 Stochastic Function Spaces and Their Tensor
Structure

We here introduce the definitions of stochastic functions
spaces and their approximations. Let (Ξk,Bk,Pξk

) denote the
probability space associated with a random variable ξk, with
Ξk ⊂ R and Pξk

the probability measure of ξk. We suppose that
these random variables are mutually independent. Therefore,
the probability space (Ξ,B,Pξ ) associated with ξ = (ξ1, . . . ,ξd)
has the following product structure: Ξ = ×d

k=1Ξk, B =
⊗d

k=1Bk, Pξ =⊗d
k=1Pξk

. We denote by L2
Pξ

(Ξ) the Hilbert space
of second order random variables defined on (Ξ,B,Pξ ), which
is a tensor Hilbert space with the following tensor structure:

L2
Pξ

(Ξ) = L2
Pξ1

(Ξ1)⊗ . . .⊗L2
Pξd

(Ξd)

We now introduce approximation spaces S k
nk
⊂ L2

Pξk
(Ξk), such

that

S k
nk

= span
{

φ
(k)
j

}nk

j=1
=

{
v(k)(yk) =

nk

∑
j=1

vk
jφ

(k)
j (yk);vk

j ∈ R

}

with {φ (k)
j }

nk
j=1 forming an orthonormal basis. An approximation

space Sn ⊂ L2
Pξ

(Ξ) is then obtained by tensorization

Sn = S 1
n1
⊗ . . .⊗S d

nd

=

{
v =

n1

∑
i1=1

. . .
nd

∑
id=1

vi1,...,id φ
(1)
i1
⊗ . . .⊗φ

(d)
id

; vi1,...,id ∈ R

}

where
(

φ
(1)
i1
⊗ . . .⊗φ

(d)
id

)
(y1, . . . ,yd) = φ

(1)
i1

(y1) . . .φ
(d)
id

(yd). An
element v ∈ Sn can be identified with the algebraic tensor v =
(vi1,...,id ), thus yielding the identification Sn ' Rn1 ⊗ . . .⊗Rnd .
Approximation space Sn has a dimension ∏

d
k=1 nk which grows

exponentially with the dimension d, thus making impossible the
numerical representation of an element v ∈Sn for high dimen-
sional applications. Approximation subspaces SN ⊂Sn are typ-
ically constructed by suitable tensorization rules

SN =

{
v = ∑

i∈IN

vi1,...,id φ
(1)
i1
⊗ . . .⊗φ

(d)
id

;vi1,...,id ∈ R

}

where IN ⊂ In = ×d
k=1{1, . . . ,nk} is an index set which can be

chosen a priori. A typical construction consists in taking for S k
nk

the space of degree p polynomials Pp(Ξk), and for IN = {i ∈
In;∑

d
k=1(ik−1)≤ p}. Thus, SN appears to be the so called poly-

nomial chaos composed of multidimensional polynomials with
total degree less than p.

We here suppose that approximation space Sn is given and
sufficiently rich to allow accurate representations of a large class
of functions (e.g. by choosing polynomial spaces with very high
degree). Then, the aim of the present strategy will be to approxi-
mate these representations for high dimensional applications.

2.2 Regression Methods
We here consider the case of a real-valued model output

u : Ξ→ R. We denote by {yq}Q
q=1 ⊂ Ξ a set of Q samples of

ξ , and by {u(yq)}Q
q=1 ⊂ R the corresponding model evaluations.

We suppose that an approximation space SN = span{φi}N
i=1 is

given. Classical least-square regression for the construction of
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an approximation uN ∈SN then consists in solving the follow-
ing problem

‖u−uN‖2
Q = min

v∈SN
‖u− v‖2

Q with ‖u‖2
Q =

Q

∑
q=1

u(yq)2 (1)

Remark 1. For the case of a function u : Ξ→ V with V = Rn,
we could introduce ‖u‖2

Q = ∑
Q
q=1 ‖u(yq)‖2

V , with ‖ · ‖V a norm
on V .

Note that ‖ · ‖Q only defines a semi-norm on L2
Pξ

(Ξ) but it
may define a norm on the finite dimensional subspace SN if we
have a sufficient number Q of model evaluations. A necessary
condition is Q≥N. However, this condition may be unreachable
in practice for high dimensional stochastic problems and usual a
priori (non adapted) construction of approximation spaces SN .
Moreover, classical regression may yield bad results because of
ill-conditioning (solution very sensitive to sampling points). A
way to circumvent these issues is to introduce a regularized re-
gression functional

J λ (v) = ‖u− v‖2
Q +λR(v) (2)

where λ is a regularization parameter and R a regularization
functional. The regularized regression problem then consists in
solving

J λ (uλ
N) = min

v∈SN
J λ (v) (3)

Denoting by v = (v1, . . . ,vN)T ∈ RN the coefficients of an ele-
ment v = ∑

N
i=1 viφi ∈SN , we can write

‖u− v‖2
Q = ‖z−Φv‖2

2 (4)

with z = (u(y1), . . . ,u(yq))T ∈ RQ the vector of random eval-
uations of u(ξ ) and Φ ∈ RQ×N the matrix with components
(Φ)q,i = φi(yq). We can then introduce a function R : RN → R
such that R(∑i viφi) = R(v), and a function Jλ : RN → R such
that J λ (∑i viφi) = Jλ (v) = ‖z−Φv‖2

2 + λR(v). An algebraic
version of regression problem (3) can then be written as follows:

min
v∈RN
‖z−Φv‖2

2 +λR(v) (5)

Regularization introduces additional information such as
smoothness, bounds on norms, sparsity. . . Under some assump-
tions on the regularization functional R, problem (3) may have a
unique solution. However, the choice of regularization strongly
influences the quality of the obtained approximation.

2.3 Sparse Regularization
Over the last decade, methods based on sparse regulariza-

tion have been rediscovered under the umbrella of compressed
sensing that aims at recovering sparse signals from a few
linear measurements [5–7]. A sparse function is one that
can be represented using few terms when expanded on a
suitable basis. In the context of uncertainty quantification,
if a stochastic function is known to be sparse on a particular
function basis, e.g. polynomial chaos (or tensor basis), sparse
regularization methods can be used for quasi optimal recovery
with only a few sample evaluations. In general, a successful
reconstruction of sparse solution vector depends on sufficient
sparsity of the coefficient vector and on additional technical
properties (e.g. incoherence). This strategy has been found to
be effective for non-adapted sparse approximation of PDEs [8,9].

An approximation uN(ξ ) = ∑
N
i=1 uiφi(ξ ) of a function u(ξ )

is considered as sparse on a particular basis {φi(ξ )}N
i=1 if only

a small fraction of coefficients u = (u1, . . . ,uN)T are significant.
Under certain conditions, the significant coefficients can be com-
puted accurately using only Q � N random samples of u(ξ )
via sparse regularization. Given the random samples z ∈ RQ of
the model output u(ξ ), sparse regularization aims at finding the
nearly sparsest coefficient u by solving an optimization problem
of the form:

min
v∈RN
‖Φv− z‖2

2 +λ‖v‖s

where ‖v‖s is a measure of the sparsity of v. Let us briefly ex-
plain the construction of such a regression problem. We assume
that the solution u is approximately sparse, such that for a given
precision δ , the set {v ∈ RN ;‖Φv− z‖2 ≤ δ} is non empty. The
sparsest approximation in this set can be ideally obtained by solv-
ing a problem of type

min
v∈RN
‖v‖0 subject to ‖Φv− z‖2 ≤ δ (Pδ

0 )

where ‖v‖0 = #{i ∈ {1, . . . ,N} : vi 6= 0} is the number of non
zero components of v. In general, this problem is not computa-
tionally tractable as it is NP hard to compute. Under certain as-
sumptions, problem (Pδ

0 ) can be reasonably well approximated
by the following minimization problem:

min
v∈RN
‖v‖1 subject to ‖Φv− z‖2 ≤ δ (Pδ

1 )

where ‖v‖1 = ∑
N
i=1 |vi| is the 1-norm of v. Since the 1-norm ‖v‖1

is strictly convex, the optimization problem (Pδ
1 ) admits a unique
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solution. An equivalent form of (Pδ
1 ) can be written

min
v∈RN
‖Φv− z‖2

2 +λ‖v‖1 (Pλ
1 )

where λ > 0 is some regularization parameter which is related to
tolerance δ . Several optimization algorithms have been proposed
for solving (Pλ

1 ), such as interior point methods [10].
Of course, in order to successfully recover the coefficients u

of function uN ∈SN with sparse regularization, the function uN
must be sparse relatively to the basis which is used. The question
is now: how to select a basis in which the approximation uN is
sparse ?

3 TENSOR APPROXIMATIONS BASED ON NON IN-
TRUSIVE REGRESSION

3.1 Canonical Tensor Subsets
We now introduce some basic definitions of tensor subsets

of the finite dimensional tensor space Sn = S 1
n1
⊗ . . .⊗S d

nd
in

which approximations of stochastic functions will be searched.
We first introduce the set of elementary tensors R1 ⊂ Sn (or
rank-one tensors) defined by

R1 =

{
v(y) =

(
⊗d

k=1v(k)
)

(y) =
d

∏
k=1

v(k)(yk) ; v(k) ∈S k
nk

}

R1 is a (nonlinear) submanifold of Sn with a dimension
(∑d

k=1 nk−1) which grows only linearly with dimension d.

Remark 2. Denoting by v(k) = (vk
j)

nk
j=1 ∈ Rnk the vector of co-

efficients of an element v(k) ∈ S k
nk

, an element v ∈ R1 can be
identified with an algebraic rank-one element v = ⊗d

k=1v(k) in
Rn1 ⊗ . . .⊗Rnd . In the following, we will omit this identification
for clarity, although it is crucial for practical implementation.

We also introduce the set of rank-m (canonical) tensors Rm de-
fined by

Rm =

{
v =

m

∑
i=1

vi ; vi =⊗d
k=1v(k)

i ∈R1

}
= Rm−1 +R1

Note that we have the property that Sn = span(R1), such that
each element in Sn can be represented as a sum of elementary
tensors. In the following, we will propose algorithms for the
construction of approximations in tensor subsets R1 and Rm,
which are low-dimensional subsets of the approximation space
Sn, but which are not linear spaces nor convex sets, thus making
more difficult the analysis and practical resolution of optimiza-
tion problems in these sets.

Remark 3. Other tensor subsets have been introduced which
have better approximation properties, such as Tucker tensor sets
or Hierarchical tensor sets (see [11]). These tensor formats are
not considered here.

3.2 Updated Greedy Construction of a Canonical Ten-
sor Decomposition

We here present an algorithm for the construction of a rank-
m approximation um ∈Rm of u of the form

um =
m

∑
i=1

αiwi, wi =⊗d
k=1w(k)

i ∈R1 (6)

We use an updated greedy procedure which is as follows. We
start by setting u0 = 0. Then, knowing an approximation um−1 of
u, we proceed as follows.

Correction step. We first compute a correction wm ∈ R1 of
um−1 which is based on the following regression problem:

wm ∈ arg min
w∈R1

‖u−um−1−w‖2
Q (7)

Note that the nonlinearity of this regression problem comes from
the fact that the set R1 is not a linear vector space. In practice,
minimization problem (7) is solved using an alternating mini-
mization algorithm. Denoting w = ⊗d

k=1w(k), it consists in suc-
cessively solving regression problems minw( j)∈S j

n j
‖u− um−1−

⊗d
k=1w(k)‖2

Q for fixed values of functions {w(k)}k 6= j.

Updating step. The correction step provides an approximation
um−1 +wm. Then, the next approximation um = ∑

m
i=1 αiwi is com-

puted using regularized regression:

um = arg min
v∈Sm

‖u− v‖2
Q +λR(v) (8)

where Sm = span{wi}m
i=1 is the linear space generated by the

previously computed elementary tensors. This algorithm can be
interpreted as an updated greedy procedure for the construction
of a small dimensional linear approximation space Sm in which
an approximation um is computed using a suitable regularized
regression technique. Regularizations which are adapted to the
present context are discussed in the following section.

Remark 4. A pure greedy construction would consist in letting
um = um−1 +wm. This pure greedy construction yields to a rather
bad behavior of the sequence of approximations {um}m≥1. A
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remedy could be to introduce a regularized version of the correc-
tion

wm ∈ arg min
w∈R1

‖u−um−1−w‖2
Q +λR(um−1 +w)

If the functional R is chosen as a strictly convex function, then it
can be proved (following [12]), that the sequence um = um−1 +
wm converges towards the unique solution uλ

n of the regularized
regression problem minv∈Sn J λ (v), with J λ defined in (2).
However, the difficulty is to find a pertinent regularization func-
tional R yielding a good approximation uλ and such that it is
compatible with the tensor framework.

3.3 Regularized Regression in Reduced Bases of El-
ementary Tensors

Here, we detail the definition of the updating step (8) for
computing the approximation um = ∑

m
i=1 αiwi. Denoting by

z ∈ RQ the vector of samples of u(ξ ), by α = (α1, · · · ,αm)T the
vector of coefficients and by W ∈ RQ×m the matrix whose com-
ponents ar (W )q,i = wi(yq), problem (8) can be reformulated as
the following optimization problem:

min
α∈Rm

‖Wα− z‖2
2 +λR(α);

In fact, the set of functions {wi}m
i=1 of um can be interpreted as

the first m elements of a stochastic basis in which the solution u
is approximately sparse.

Choice of the Regularization. A first natural choice consists
in taking

R(α) = ‖α‖2
2

As illustrated in numerical examples, we will observe that this
choice of `2 regularization yields a deterioration with m of the
approximation um.
Depending on the way of generating the elements, the vector of
coefficients α ∈Rm may also be searched as a sparse vector. It is
usually the case when we use sub-optimal greedy constructions,
yielding to high values of rank m for reaching a given precision,
much higher than optimal rank representation of the solution.
Therefore, we propose to introduce sparse `1-regularization in
the definition of the updating step, by choosing

R(α) = ‖α‖1

In practice, it is observed that this sparse regularization allows a
pertinent selection of significant terms in the canonical decompo-
sition and allows to avoid a deterioration with m of the sequence

um. Note that when some αi are found to be negligible, it yields
an approximation um = ∑

m
i=1 αiwi ∈ Rm with a lower effective

rank representation.
The influence of the choice of regression functional in the updat-
ing step will be analyzed on numerical examples.

Selection of Regularization Parameter. An optimal parame-
ter λ can be selected using suitable error criteria, e.g. based on
cross validation.

Remark 5. Let us note that the proposed algorithm not only
generates an approximation of the model output but a sequence
of model approximations {um}m≥1. Therefore, error criteria
based on cross validation can also be used in order to select the
best model among these generated models.

4 APPLICATION EXAMPLES
In this section, we report the performance of the pro-

posed tensor-based regression method on two high dimensional
stochastic partial differential equations.

4.1 Example 1: Diffusion equation with multiple in-
clusions

We consider a stationary diffusion problem defined on a two
dimensional domain Ω = (0.1)× (0.1) (see Fig. 1):

−∇·(κ∇u) = ID(x) on Ω (9)
u = 0 on ∂Ω

where D ⊂ Ω is a square domain in the middle and ID is the
indicator function of D. The diffusion coefficient is defined by

κ =

{
ξk on Ck, 1≤ k ≤ 8
1 on Ω\(∪8

k=1Ck)

where the Ck, 1 ≤ k ≤ 8, are circular domains (see Fig. 1) and
where the ξk ∈U(0.9,1.1) are independent uniform random vari-
ables. We define the quantity of interest

I(u)(ξ ) =
∫

D
u(x,ξ )dx

We introduce approximation spaces S k
p+1 = Pp(0.9,1.1),

with polynomial degree p = 10. An accurate approximation of
the reference solution is evaluated by the Proper Generalized De-
composition method(see [13]).

We obtain the tensor basis by greedy procedure and update
the coefficients α after each successive rank one correction. In
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FIGURE 1. Diffusion problem with multiple inclusions.

FIGURE 2. Cross validation obtained by `1 regularized update for
different sample sizes.

FIGURE 3. Cross validation error of `1 and `2 regularized update for
sample size Q = 56

order to derive reliable conclusions, we compare the performance
of `2 and `1 regularization by performing a sample independence
study. We take 11 sample sets of size Q = {32,56,100,1000}
and plot median value of the quantities together with quartiles
and outliers, if any. As shown in Fig. 2, when using `1 regular-
ization, the cross validation error reduces with sample size Q, as
long as the influence of the sample. In other words, when using
`1 regularization, the obtained tensor approximations seems to
converge with Q towards a deterministic approximation. Fig. 3
and Fig. 4 show cross validation error v/s number of tensor basis
functions for Q = 56 and 1000 samples respectively. We note
that for few samples i.e. Q = 56, `2 regularization deteriorates
for high rank approximation whereas `1 regularization yields a

FIGURE 4. Cross validation error of `1 and `2 regularized update for
sample size Q = 1000

FIGURE 5. Domain and finite element mesh.

stabilization of the cross validation error. For Q = 1000, the ap-
proximation obtained using `1 regularization is convergent for
high dimensional tensor basis and gives better approximation of
the solution. It can also be noted that for Q as low as 56, we
obtain second order accurate solutions for almost all sample sets.
We therefore draw the following conclusions:

• The number of model evaluations sufficient to obtain a
very accurate approximation is very small compared to
the dimension of the underlying approximation space N =
dim(Sn) = (p + 1)8 = 118 but also to the dimension of the
full polynomial chaos with total degree less than or equal to
p (i.e N = (8+p)!

p!8! = 43758).
• `1 regularization is able to recover sparse solution vector α

on stochastic tensor basis and hence is an effective update
strategy.
• Tensor approximations with update strategy based on `1 reg-

ularization appears to converge with respect to the number
of samples towards a deterministic approximation. In other
words, beyond a sample size threshold, the obtained tensor
approximations are nearly sample independent.

4.2 Stationary Advection Diffusion Reaction Equa-
tion with Random Field

In this example, we consider a stationary advection diffusion
reaction equation on a spatial domain Ω = (0,1)2 (Fig. 5) where
the source of uncertainty comes from the diffusion coefficient
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FIGURE 6. Spatial modes {µk(x)}40
k=1 of the decomposition of ran-

dom field µ(x,ξ ).

which is a random field. The problem is:

−∇·(µ(x,ξ )∇u)+ c·∇u+κu = f on Ω

u = 0 on ∂Ω

where κ = 10 is a deterministic reaction coefficient and c =
250(x− 1

2 , 1
2 − y) is a deterministic advection velocity. The

source term is deterministic and is defined by f = 100IΩ1 , where
Ω1 = (0.7,0.8)× (0.7,0.8) ⊂ Ω and where IΩ1 is the indicator
function of Ω1. µ(x,ξ ) is a random field defined by

µ(x,ξ ) = µ0 +
100

∑
k=1

√
σkµk(x)ξk (10)

where µ0 = 1 is the mean value of µ , where the ξk ∈U(−1,1) are
mutually independent uniform random variables and where the
µk are a set of L2(Ω)-orthonormal spatial functions. The couples
(µk,σk)∈ L2(Ω)×R+ are chosen as the 100 dominant eigenpairs
of eigenproblem T (µk) = σkµk, where T is the kernel operator

T : v ∈ L2(Ω) 7→
∫

Ω

α(x,y)v(y)dy ∈ L2(Ω)

with α(x,y) = 0.22exp(− ‖x−y‖2
l2
c

) with lc the correlation length.
The equation (10) then corresponds to a truncated version of
a homogeneous random field with mean 1, standard deviation
0.2√

3
and exponential square covariance function with correlation

length lc. The first 40 spatial functions are plotted in Fig. 6.
The d = 100 random parameters ξ = (ξk)d

k=1 define a prob-
ability space (Ξ,B,Pξ ), with Ξ = (−1,1)d and Pξ the uni-
form probability measure. We introduce approximation spaces
S k

p+1 = Pp(−1,1) which are spaces of polynomials with degree
p = 3.

FIGURE 7. Cross validation obtained by `1 regularized update for
different sample sizes.

FIGURE 8. Cross validation error of `1 and `2 regularized update for
sample size Q = 100

We compare the performance of `2 and `1 regularizations
by performing a sample independence study. We took 11 sam-
ple sets of size Q = {100,200,1000} and plot median value
of the quantities together with quartiles and outliers, if any.
Fig. 7 shows cross validation error v/s tensor basis dimension
for Q = 100 samples. We note that for this sample size `1 regu-
larization keeps the tensor basis with minimum cross validation
error. However, in this example, rank one approximation is very
accurate and we observe no improvement in solution even for
Q = 1000.

From this example, several conclusions can be drawn:

• The proposed regression technique is very effective in very
high dimensional stochastic problems. The number of
model evaluations Q required to obtain very accurate so-
lution is very small. This is orders of magnitude less than
a classical Polynomial Chaos approximation (which would
require N = (p + d)!/(p!d!) = 176851 model evaluations,
when p = 3). Note that the efficiency of the proposed tensor
approximation methods on this particular example is due to
the effective low rank of the solution.

• The cross validation error reduces with the sample size Q.
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Tensor approximations seem to converge with Q towards a
deterministic tensor approximation.
• `1 regularization keeps the tensor approximation with mini-

mum cross validation error.

5 CONCLUSION
A non-intrusive regression technique based on tensor prod-

uct approximation has been proposed for propagation of uncer-
tainty in high dimensional stochastic problems. It involves for-
mulating a minimization problem in stochastic tensor product
space and using tensor product approximation strategies to build
a sequence of approximations with increasing rank. The rank-
one tensors obtained by successive corrections can then be cho-
sen as reduced bases on which coefficients can be updated by
`1 regularization such that a few significant terms are retained
in the final solution. Cross validation model selection technique
has been used to evaluate the best approximation of the quantity
of interest among the different generated approximations. The
ability of the proposed method to handle high dimensional un-
certainty quantification problem was illustrated on two stochastic
partial differential equations and first results are quite promising.
Future work will be dedicated to evaluate the capabilities of this
method in approximating stochastic functions with discontinu-
ities. Other updating strategies based on sparse regularization
and hybrid methods will also be studied for better exploiting the
generated information.
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